KURT GöDEL Biography - Famous Scientists

 
 

Biography » famous scientists » kurt g 246;del

KURT GöDEL

Name: Kurt Godel                                                                     
Born: 28 April 1906 Brno, Moravia, Austria-Hungary                                   
Died: 14 January 1978 Princeton, New Jersey, U.S.                                     
                                                                                     
                                                                                     
Kurt Godel (April 28, 1906 Brno (Brunn), Austria-Hungary (now                         
Czech Republic) - January 14, 1978 Princeton, New Jersey) was an Austrian             
American mathematician and philosopher.                                               
                                                                                     
One of the most significant logicians of all time, Godel's work has had immense       
impact upon scientific and philosophical thinking in the 20th century, a time         
when many, such as Bertrand Russell, A. N. Whitehead and David Hilbert, were         
attempting to use logic and set theory to understand the foundations of               
mathematics.                                                                         
                                                                                     
Godel is best known for his two incompleteness theorems, published in 1931 when       
he was 25 years of age, one year after finishing his doctorate at the University     
of Vienna. The more famous incompleteness theorem states that for any self-consistent 
recursive axiomatic system powerful enough to describe the arithmetic of the         
natural numbers (Peano arithmetic), there are true propositions about the             
naturals that cannot be proved from the axioms. To prove this theorem, Godel         
developed a technique now known as Godel numbering, which codes formal               
expressions as natural numbers.                                                       
                                                                                     
He also showed that the continuum hypothesis cannot be disproved from the             
accepted axioms of set theory, if those axioms are consistent. He made important     
contributions to proof theory by clarifying the connections between classical         
logic, intuitionistic logic, and modal logic.